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Abstract

Effects from turbulence-induced fluctuations in water vapor saturation on the growth of

cloud droplets are examined using a Brownian-like diffusion model to represent the condensation

growth/evaporation of droplets along the coordinate of droplet size.  The model predicts a

diffusive broadening of the droplet size distribution with time, tempered by enhanced

evaporation-induced drift of droplets to smaller size from vapor depletion, and approach to a

stationary size distribution determined by the balance between size-space diffusion and drift.

This balance between diffusion and drift is shown to yield simple analytic expressions for the

size distribution that are in good agreement with observed size distributions.  Monte Carlo

simulations of the approach to the stationary limit and of the distribution itself are presented.  A

key turbulence parameter required by the kinetic potential theory of drizzle formation [McGraw

and Liu, 2003; 2004] is estimated using the new results.

1. Introduction
Uncertainties associated with the physical processes governing clouds and precipitation

limit both regional weather forecast accuracy and the ability to predict future global climate

using computer models [Houghton et al., 2001].  A large component of this uncertainty derives

from complications associated with the coupling between cloud turbulence and microphysical

processes over a wide range of spatial/temporal scales and droplet size [Shaw, 2003].   Much

effort is currently aimed at reducing uncertainty through the development of more robust

parameterizations for clouds and precipitation that are microphysically based yet

computationally simple enough so as to be suitable for use in regional to global scale models

(Rotstayn, 1999; Rotstayn and Liu, 2005). Especially crucial to understanding many cloud-

related phenomena such as precipitation, optical properties, and assessment of the climate impact

of anthropogenic aerosols through indirect effects related to the tendency for aerosols to alter

cloud properties, is knowledge of the cloud droplet size distribution.  Recent progress in

parameterizations for clouds and precipitation in atmospheric models [Liu and Daum, 2000;

2004; Liu et al., 2004; 2005], indirect aerosol effects [Liu and Daum, 2002; Rotstayn and Liu,
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2003; Peng and Lohmann 2003], and rain initiation theory [McGraw and Liu, 2003; 2004]

reinforces the need for better understanding of the spectral shape of the droplet size distribution.

Although significant progress in our understanding of the cloud droplet size distribution

has been made and a number of models (e.g., stochastic condensation, entrainment and mixing,

and systems theory) have been proposed over the last few decades [Baker et al., 1980; Cooper,

1989; Srivastava, 1989; Khvorostyanov and Curry, 1999; Liu et al., 2002; Shaw, 2003], the

details of the processes involved are still poorly understood and highly controversial. The long-

standing issue of the spectral broadening (observed droplet size distributions are generally much

broader than those predicted by the classical uniform model) remains elusive. Furthermore, few

studies/models have yielded analytical forms for the droplet size distribution that agree well with

observations, providing the need for development of simple microphysics parameterizations [Liu

and Daum 2004].

Previous models of stochastic condensation have usually been of the mean field type.  In

these models a collection of droplets, estimated on the basis of Kolmogorov scaling to be several

meters in extent [Shaw, 2003], is uniformly subject to a low-frequency fluctuating saturation tied

to the vertical updraft velocity.  However, it has been shown that this uniformity places a severe

restriction on the degree to which turbulent fluctuations can lead to broadening of the size

distribution [Pruppacher and Klett, 1997].   After pointing out that the early stochastic

condensation models generally yield droplet size distributions of the Gaussian type while

observations tend to follow positively skewed distributions, Khvorostyanov and Curry [1999]

derived a more general mean-field equation that yields gamma droplet size distributions under

certain assumptions in the low-frequency regime.  Nevertheless, it is clear that the low-frequency

limit is often not satisfied in clouds, where significant turbulence fluctuations can occur on

smaller spatial scales [Shaw, 2003].

An alternative, simulation-based, approach was described by Kulmala and co-workers

[Kulmala et al.,1997; Tisler et al., 2005].  This approach captures fluctuations on the smaller

spatial scales by sampling the condensation/evaporation trajectories of individual droplets each
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allowed to experience a different fluctuation history – thus providing a statistical sampling of the

droplet distribution.  The droplet growth trajectories are assumed to be driven by turbulence

fluctuations in vapor saturation.  However, effects from vapor depletion (e.g. on slowing of

droplet growth and approach to a stationary size distribution) were not included.  Furthermore,

such detailed Monte Carlo simulations are too complicated to be used in developing cloud

parameterizations.  Here we present a new simple model obtained by applying the Langevin

equation and Fokker-Planck equation to the study of the cloud droplet size distribution. The

model, in which the effect of vapor depletion is accounted for, yields an analytical droplet size

distribution of the Weibull form.

2. Turbulent condensation and evaporation: the diffusive growth of cloud droplets

Turbulence causes fluctuations in water vapor saturation and, consequently, in the rates

of droplet evaporation and condensation growth.  Such fluctuations have been shown to play an

essential role in broadening of the cloud droplet size distribution and, it has been proposed, in the

production of big cloud droplets responsible for the onset of rapid coalescence growth and

initiation of precipitation [Kulmala et al., 1997; Tisler et al., 2005].  The resulting cloud droplet

size distributions can be modeled with time either by Monte Carlo simulation methods [Tisler et

al., 2005] or analytically, as described below, in terms of a Fokker-Planck equation describing

the drift and diffusion of droplets along a coordinate of droplet size.

Cloud droplet growth occurs in the diffusion limited regime for which the

growth/evaporation rate takes the form:

dr 2

dt
= k(T )(S −1) = k(T ) S −1( ) + k(T) S(t) − S( ) (1)

where r is droplet radius, k(T) is a temperature and pressure dependent rate coefficient (to

simplify notation we suppress the weaker pressure dependence) that includes coupled heat and

mass transfer during growth/evaporation of the drop [Pruppacher and Klett, 1997].  S is the

saturation ratio, defined as the ratio of the vapor pressure of the interstitial cloud air to the

equilibrium vapor pressure of the drop.  The second equality allows for the possibility that the
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average parcel saturation ratio S  may be other than unity as a consequence of either adiabatic

cooling or vapor depletion.  We assume that (i) the fluctuations in S can be characterized by a

finite variance σS
2 ,

S − S( )2 = σ S
2 , (2a)

with exponential decay of correlation over timescale γ −1 ,

S(t) − S( ) S(t + Δ) − S( ) = S(t)S( t + Δ − S 2

S(0)S(Δ) − S 2 = σ S
2 exp(−γΔ)

. (2b)

These assumptions agree with the model of Kulmala and co-workers [Kulmala et al., 1997;

Tisler et al., 2005], however it is significant that we will not require that the fluctuations in S be

gaussian.  Thus the present analysis should apply even in the face of large non-gaussian

fluctuations in S from intermittency – a well known property of cloud turbulence [Shaw, 2003].

Estimates for σS  (on the order of 1%) and for the correlation time, γ −1  (from several seconds to

tens of seconds) have also been provided [Kulmala et al., 1997; Tisler et al., 2005].  Such short

correlation times suggest that fluctuations in S are strongly damped over the time scale, τ ,

estimated below, of significant change in the droplet size distribution.   Finally it is assumed (c.f.

the second equality of Eq. 2b) that (iii) the fluctuations are stationary in the sense that their

statistical properties depend only on the time difference, Δ .

The preceding suggests an analogy to Brownian particle motion with z ≡ r 2  playing the role of

the spatial coordinate and Eqs. 1 and 2 giving the instantaneous velocity, v = dz / dt .  The latter

has two components: the random fluctuation term in Eq. 1, which contains S(t)  and gives rise to

diffusion, and the uniform drift term proportional to S −1 .  Thus the full problem, including

both diffusion and drift, is analogous to the well-studied model of Brownian motion in a field of

force.   The formal analogy to Brownian motion allows one to write down many key results

immediately rather than having to repeat in detail derivations available in standard texts [e. g.,

Serra et al., 1986; Gardiner, 1985].  We first consider the random growth component, which in
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the strongly damped regime (γ −1 << τ ) causes droplets to diffuse along the z coordinate with

diffusion coefficient given by the product of the variance of the growth velocity fluctuations,

k 2(T)σS
2 , and correlation time [Serra et al., 1985]:

DZ =
k2 (T )σS

2

γ
. (3)

3. Vapor depletion and the stationary cloud droplet distribution

Diffusion along the coordinate of droplet size is checked by requirements that the droplet

radius be positive and total water (liquid plus vapor) be conserved; droplets cannot grow without

vapor depletion.  Vapor depletion will be represented here in the simplest mean field sense by

assigning an average saturation S  for the cloud parcel under consideration determined self

consistently by the methods now described.

Under stationary conditions analytic results for both S  and the droplet distribution itself

are readily obtained.  For S ≠ 1  the first term on the right hand side of Eq. 1 gives a

deterministic drift in droplet size with velocity:

vdepl =
dr 2

dt
⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 
depl

= k(T ) S −1( ) . (4)

The combination of diffusion and drift is, just as in the case of Brownian motion, described by a

Fokker-Planck equation [Serra et al., 1985].  In present notation:

∂f
∂t

= DZ
∂ 2 f
∂z 2

− vdepl
∂f
∂z

=
k2 (T )σ S

2

γ
∂ 2 f
∂z 2

− vdepl
∂f
∂z

. (5)

The stationary condition (∂f /∂t = 0)  is determined from the balance between diffusion, which

tends to broaden the distribution, and increase liquid water content, and drift, which must

therefore tend to narrow the distribution, and decrease liquid water content, by reducing droplets

to smaller size (i.e. vdepl  must be negative) for a stationary distribution.  From Eq. 5 we readily

obtain a Boltzmann distribution in z for the stationary solution:
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f∞(z) = ND

vdepl
DZ

exp −
vdepl
DZ

z
⎛ 

⎝ 
⎜ 
⎜ 

⎞ 

⎠ 
⎟ 
⎟ , (6)

where vdepl = −vdepl  is the magnitude of vdepl  and normalization is to the droplet number

concentration ND .  The liquid water fraction (cm3  cloud liquid water/ cm3  air) is obtained as the

3/2 moment of f (z) :

L =
4π
3

z3/ 2
0

∞

∫ f (z)dz . (7)

Substitution of f∞(z)  for specified liquid water content yields the stationary value of vdepl:

vdepl = −π
ND

L
⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 
2/ 3

DZ = −π
ND

L
⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 
2 / 3 k 2(T )σS

2

γ
. (8)

Reflective of vapor depletion, the theory predicts a uniform shift in average saturation to values

below unity.  From Eqs. 4 and 8:

S ∞ = 1− π ND

L
⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 
2 / 3 k(T )σ S

2

γ
(9)

where the subscript on the left refers to the stationary condition.  More generally, as describe in

connection with the simulations below, vdepl  and S  are functions of time.  In the absence of

fluctuations (σS
2 = 0) water vapor is in equilibrium with the droplets under these conditions at

S =1 .

Transforming Eq. 6 from z to droplet radius gives the following positively skewed

Weibull distribution:

f∞(r) = 2πND
ND

L
⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 
2 / 3

rexp −π
ND

L
⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 
2 / 3

r2
⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

, (10)

which is similar to that derived from the maximum entropy principle and is a good representation

of typically observed cloud droplet size distributions [Liu et al., 1995; Costa et al. 2000].
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4. Monte Carlo Simulation

For simulation of Eq. 5 we utilize the equivalent Langevin equation:

dz = vdepldt + σ ZdX (11)

where σZ
2 = 2DZ  and dX = φ dt . φ  is a dimensionless random variable drawn from a

standardized normal distribution with zero mean and unit variance, p(φ) = 2π( )−1/ 2 exp(−φ2 / 2) .

With these definitions, dX = 0  and dX2 = dt .  Equivalence of Eqs. 5 and 11 is demonstrated

in standard texts on stochastic processes [e.g. Gardiner, 1990; Wilmott et al.,1998].  The drift-

diffusion processes they describe are frequently encountered (e.g. Brownian motion in a field of

force) and well suited to simulation using Monte Carlo methods.  Monte Carlo simulations were

carried out for N-drop samples of growth/evaporation trajectories based on Eq. 11.  The droplets

interact through the vapor depletion effect, but are otherwise independent.  At each time step the

drift velocity as adjusted to as to preserve liquid water content close to its externally specified

value L(t) .  Generally, e.g. with a parcel undergoing adiabatic cooling, L would be a function of

time and ND  would also change with the activation to new droplets or droplet loss.  To illustrate

the new methods we will assume the simplest case of fixed values for L and ND  specified by the

initial condition.

Figure 1 shows results from simulations of Eq. 11 for multiple samples of 100 drops

each.  Time is expressed in units of the distribution relaxation time mentioned above,

τ = z0
2 /(2DZ ) , where z0 = 3 / 4π( )2 / 3 (L / ND)

2 / 3  is the average radius squared of the droplets, and

radius in units of r0 = z0 .  Scaled results are independent of L, ND  and DZ .  The model time

step was set at 0.001τ  (d˜ t = 0.001) and simulations carried out to t = 5τ  ( ˜ t = 5).   Positive

values for the size coordinate are insured by applying a reflective boundary condition at the

origin.  The top panel shows the cumulative radial distribution (normalized to unity) for the

Weibull distribution of Eq. 10 and comparison with results from combining four 100-drop Monte

Carlo simulations at different times in the stationary limit near ˜ t = 4  (400 points total).  The
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bottom panel shows evolution of the relative dispersion ε , defined as the square root of the

variance of the droplet size distribution divided by its mean.  The points show values ofε(˜ t k )  at

each successive time step, ˜ t k = 0.001k , over the course of the simulation.  The initial dispersion

is zero, corresponding to a monodisperse initial size distribution.  This is followed by broadening

of the distribution with time, due to the turbulence fluctuations in saturation and condensation

growth/evaporation rates, preserving L and ND .  Note that the broadening seen here is counter to

the usual tendency of condensation growth at fixed (non-fluctuating) saturation to narrow size

distributions over time [McGraw, 1997].  Broadening is effectively complete by ˜ t = 1  with

slower approach to the asymptotic value, ε∞ = 4 /π −1 = 0.5227... , horizontal line, determined

by the moments of the stationary distribution, Eq. 10.  Although not shown here, the drift

velocity also approaches the analytic result (Eq. 8).

5. Implications for the study of clouds and precipitation

The simplest Brownian drift-diffusion model (constant coefficients in Eq. 11) has been

found to yield a Weibull spectrum of cloud droplets in excellent agreement with shapes and

relative dispersions of typically observed cloud droplet size distributions.  More general

distributions can be obtained by allowing for drift/diffusion coefficients that are a function of

droplet size.  For example, the Kelvin effect, not included here, gives a small additional, and size

dependent, contribution to the drift to smaller droplet size.  Alternatively, empirical size

distributions can be used and Eq. 5 inverted to obtain information on the drift/diffusion rates.

Such extensions of the method will be described a future publication.

The present analysis also provides a key turbulence parameter needed in the kinetic

potential (KP) theory of drizzle formation [McGraw and Liu, 2003; 2004].  This is the quantity

t1% , defined as the time required for diffusion along the growth coordinate to change the cloud

droplet size 1% from 10 to 10.1 micron radius.  From the preceding this can now be expressed in

terms of the diffusion constant: t1% = (Δz )2 /(2DZ) , where Δz =10.12 −10.02 = 2.01µm2  and the
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units of DZ  are µm 4s−1 .  We now estimate DZ  from Eq. 3:  Using   k(10
C) = 167.8µm2s−1 , from

Eq. 13.28 and the parameters given in Table 13.1 of Pruppacher and Klett [1997], saturation

variance σS = 0.01 and correlation time γ −1 = 7s , both from Kumala et al. [1997], yields

DZ = 20.2µm
4s−1  and t1% = 0.1s .  This is in the range of previous very rough estimates for this

parameter and happens to be a condition for which detailed calculations of the drizzle barrier and

drizzle rate have been presented [McGraw and Liu, 2003; 2004].  Finally for a typical mean

droplet radius r0 = 10µm   ( z0 = 100µm
2 ) we obtain the estimate τ = z0

2 /(2DZ ) ≈ 4min  for the

distribution relaxation time, thus justifying the strongly damped condition (γ −1 << τ ) used in

derivation of the Fokker-Planck and equivalent Langevin equations (Eqs. 5 and 11, respectively).

In conclusion, the present theory provides both a mechanism for shaping the cloud droplet

distribution and foundation for the similar drift-diffusion processes that underlie the KP theory of

drizzle initiation.
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Fig. 1 Top panel

c(˜ r )



13

                                                                              ˜ t 

Fig. 1 Bottom panel

Figure 1.  (Top) Cumulative radial distribution versus scaled drop radius from Eq. 10 (solid
curve) and comparison with results from four 100-drop Monte-Carlo simulations (points) at
different times near ˜ t = 4 .  (Bottom) Relative dispersion, ε , for a 100-drop sample taken at
reduced time increments of 0.001 (5000 samples total) as a function of reduced sample time.
Results are shown for evolution from an initially monodisperse size distribution.  The
fluctuations seen in ε  are due to the limited sample size.

ε




